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Folds!

@ A list xs can be built by applying the (:) and []
operators to a sequence of values:

XS =Xyt Xy i X3 1 Xg b 2 X 0[]

@ Suppose that we are able to replace every use of
(:) with a binary operator (®), and the final []
with a value n:

XS=X1@X2@X3@X4@@XK@H

@ The resulting value is called fold (®) n xs

€ Many useful functions on lists can be described in

this way.
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Graphically:

>

[]

)

f = foldr (®) n




Example: sum

:>e1

)

[]

sum = foldr (+) 0




Example: product

€3

:>e1

)

[]

€3

product = foldr (*) 1




Example: length

consxys=1+ys

cons

e, : e, cons

€3 [] €3 0

length = foldr (\x ys -> 1 + ys) 0



Example: map

cons X ys = f x:ys

cons

e, : e, cons

e, [] €3 []

map f = foldr (\x ys -> f x : ys) []



Example: filter

€3

:>e1

[]

cons

CoNns X Ys
= if p X
then x:ys

cons

else ys

)

cons

€3

[]

filter p = foldr (\x ys -> if p x then x:ys else ys) []
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Formal Definition:

fo
fo
fo

C
C

C

r : (@a->b->b)->b->[a]->b
r cons nil [] = nil
r cons nil (x:xs) = cons x (foldr cons nil xs)



Applications:

sum
product
length
map f
filter p

= fo

C
C
C
C

C

r(+)0

r(*) 1
r(\xys->1+1ys)0
r(\x ys -> fx :vys)[]
rcl]

where c x ys = If p x then x:ys else ys
= foldr (:) ys xs

XS ++ ysS
concat
and

or

= fo
= fo
= fo

C
C

C

r(++) [1
r (&&) True

r (||) False
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Patterns of Computation:

N4

N4

foldr captures a common pattern of computations
over lists

As such, it's a very useful function in practice to
include in the Prelude

Even from a theoretical perspective, it's very
useful because it makes a deep connection
between functions that might otherwise seem
very different ...

From the perspective of lawful programming, one
law about foldr can be used to reason about
many other functions
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A law about foldr:

@ If (®) is an associative operator with unit n, then
foldr (®) n xs @ foldr (®) n ys
= foldr (®) n (xs ++ ys)

® (X D..OEX®ND(Y,®..DY; ®N)
—(xl@ . DX DY D .. @yJGr)n)

@ All of the following laws are special cases:
sumxs + sumys = sum (XS ++ Vys)
product xs * product ys = product (xs ++ ys)
concat xss ++ concat yss = concat (xss ++ yss)
and Xxs && and vys = and (xs ++ ys)
or Xs || or ys = or (XS ++ ys)
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foldl:

@ There is a companion function to foldr

called foldl:

folc (b->a->b)->b->[a]->Db
foldl s n [] =n

foldl s n (x:xs) = foldl s (s n x) xs

@ For example:

foldl s n [e,, e,, €5]
s(s(sne)ey) e;
(n's e) s e,) S e
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foldr vs foldl:

cons

cons

cons

nil

foldr

nil

SNOC
SNOC e,
SNOC e,
€
foldl
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Uses for foldl:

€ Many of the functions defined using foldr can be
defined using foldl:

sum = foldl (+) O
product = foldl (*) 1

® There are also some functions that are more
easily defined using foldl:
reverse = foldl (\ys x -> x:ys) []

€® When should you use foldr and when should you

use foldl? When should you use explicit recursion
instead?
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foldrl and foldl1:

@ Variants of foldr and foldl that work on non-

empty lists:
foldrl (@a->a->a)->[a]->a
foldrl f [X] = X
foldrl f (x:xs) = f x (foldrl f xs)
foldl1 r(@->a->a)->[a]->a
foldll f (x:xs) = foldl f x xs
€ Notice:

= No case for empty list
= No argument to replace empty list
= Less general type (only one type variable)
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Uses of foldl1, foldrl:

From the prelude;
minimum = foldl1l min
maximum = foldll max

Not in the prelude:
commaSep = foldrl (\st->s++ ", " ++ t)
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Example: Grouping

groupn = takeWhile (not.null)
map (take n)
iterate (drop n)

["abC", "def", llgll]

]

["abC", "def", "g", llll’ "", "", N

]

[llabcdefgll, Ildefgll’ llg"’ "", llll’ "", N

]

"abcdefg”

]

]
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Example: Adding Commas

group n = reverse
. foldrl (\xs ys -> xs++","++ys)

. group 3
. reverse “1,2%,567”
“765,432,1"

]

[11765"’ II432", lllll]

U

"7654321"

0]

"1234567" 19



Example: transpose

transpose  [[a]] -> [[a]]
transpose [] =[]
transpose ([] : xss) = transpose Xss

transpose ((X:Xs) : XSS)
= (X : [h | (h:t) <- xss])
: transpose (xs : [ t | (h:t) <- xss])

Example:

transpose [[1,2,3],[4,5,6]] = [[1,4],[2,5],[3,6]]
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Example: say

say> putStr (say "hello")

H H EEEEE L L 000
H H E L L O
HHHHH EEEEE L L O
H H E L L O

H H RkKEERE LLLLL LLLLL 000

say>
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... continued:

where

picChar

etc...

unlines
map (foldrl (\xs ys->xs++"
transpose

map picChar

‘At = " A ",
"ARA",
"AAARA",
"A A",
"A A" ]

"‘|"|‘YS))
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Composition and Reuse:

A A
AAAAA
A A
A A

A A
AAAAA
A A
A A

A A
AAAAA
A A
A A

say> (putStr . concat
A
A A
AAAAA
A A
A A
A A
A A A A
AAAAA AAAAA
A A A A
A A A A
A A A A
A A A A A A A A
AAAAA AAAAA AAAAA AAAAA
A A A A A A A A
A A A A A A A A
A
A A
AAAAA
A A
A A
A
A A
AAAAA
A A
A A

Say>

map say

lines

say)

'VZ&'V
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Summary:

@ Folds on lists have many uses

@ Folds capture a common pattern of
computation on list values

@ In fact, there are similar notions of fold
functions on many other algebraic
datatypes ...)
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