Folds in Haskell

Mark P Jones
Portland State University

Folds!

@ A list xs can be built by applying the (:) and []
operators to a sequence of values:

XS =Xyt Xy i X3 1 Xg b 2 X 0[]

@ Suppose that we are able to replace every use of
(:) with a binary operator (®), and the final []
with a value n:

XS=X1@X2@X3@X4@@XK@H

@ The resulting value is called fold (®) n xs

€ Many useful functions on lists can be described in

this way.
2

Graphically:

>

[]

)

f = foldr (®) n

Example: sum

:>e1

)

[]

sum = foldr (+) 0

Example: product

€3

:>e1

)

[]

€3

product = foldr (*) 1

Example: length

consxys=1+ys

cons

e, : e, cons

€3 [] €3 0

length = foldr (\x ys -> 1 + ys) 0

Example: map

cons X ys = f x:ys

cons

e, : e, cons

e, [] €3 []

map f = foldr (\x ys -> f x : ys) []

Example: filter

€3

:>e1

[]

cons

CoNns X Ys
= if p X
then x:ys

cons

else ys

)

cons

€3

[]

filter p = foldr (\x ys -> if p x then x:ys else ys) []

8

Formal Definition:

fo
fo
fo

C
C

C

r : (@a->b->b)->b->[a]->b
r cons nil [] = nil
r cons nil (x:xs) = cons x (foldr cons nil xs)

Applications:

sum
product
length
map f
filter p

= fo

C
C
C
C

C

r(+)0

r(*) 1
r(\xys->1+1ys)0
r(\x ys -> fx :vys)[]
rcl]

where c x ys = If p x then x:ys else ys
= foldr (:) ys xs

XS ++ ysS
concat
and

or

= fo
= fo
= fo

C
C

C

r(++) [1
r (&&) True

r (||) False

10

Patterns of Computation:

N4

N4

foldr captures a common pattern of computations
over lists

As such, it's a very useful function in practice to
include in the Prelude

Even from a theoretical perspective, it's very
useful because it makes a deep connection
between functions that might otherwise seem
very different ...

From the perspective of lawful programming, one
law about foldr can be used to reason about
many other functions

11

A law about foldr:

@ If (®) is an associative operator with unit n, then
foldr (®) n xs @ foldr (®) n ys
= foldr (®) n (xs ++ ys)

® (X D..OEX®ND(Y,®..DY; ®N)
—(xl@ . DX DY D .. @yJGr)n)

@ All of the following laws are special cases:
sumxs + sumys = sum (XS ++ Vys)
product xs * product ys = product (xs ++ ys)
concat xss ++ concat yss = concat (xss ++ yss)
and Xxs && and vys = and (xs ++ ys)
or Xs || or ys = or (XS ++ ys)
12

foldl:

@ There is a companion function to foldr

called foldl:

folc (b->a->b)->b->[a]->Db
foldl s n [] =n

foldl s n (x:xs) = foldl s (s n x) xs

@ For example:

foldl s n [e,, e,, €5]
s(s(sne)ey) e;
(n's e) s e,) S e

13

foldr vs foldl:

cons

cons

cons

nil

foldr

nil

SNOC
SNOC e,
SNOC e,
€
foldl

14

Uses for foldl:

€ Many of the functions defined using foldr can be
defined using foldl:

sum = foldl (+) O
product = foldl (*) 1

® There are also some functions that are more
easily defined using foldl:
reverse = foldl (\ys x -> x:ys) []

€® When should you use foldr and when should you

use foldl? When should you use explicit recursion
instead?

15

foldrl and foldl1:

@ Variants of foldr and foldl that work on non-

empty lists:
foldrl (@a->a->a)->[a]->a
foldrl f [X] = X
foldrl f (x:xs) = f x (foldrl f xs)
foldl1 r(@->a->a)->[a]->a
foldll f (x:xs) = foldl f x xs
€ Notice:

= No case for empty list
= No argument to replace empty list
= Less general type (only one type variable)

16

Uses of foldl1, foldrl:

From the prelude;
minimum = foldl1l min
maximum = foldll max

Not in the prelude:
commaSep = foldrl (\st->s++ ", " ++ t)

17

Example: Grouping

groupn = takeWhile (not.null)
map (take n)
iterate (drop n)

["abC", "def", llgll]

]

["abC", "def", "g", llll’ "", "", N

]

[llabcdefgll, Ildefgll’ llg"’ "", llll’ "", N

]

"abcdefg”

]

]

18

Example: Adding Commas

group n = reverse
. foldrl (\xs ys -> xs++","++ys)

. group 3
. reverse “1,2%,567”
“765,432,1"

]

[11765"’ II432", lllll]

U

"7654321"

0]

"1234567" 19

Example: transpose

transpose [[a]] -> [[a]]
transpose [] =[]
transpose ([] : xss) = transpose Xss

transpose ((X:Xs) : XSS)
= (X : [h | (h:t) <- xss])
: transpose (xs : [t | (h:t) <- xss])

Example:

transpose [[1,2,3],[4,5,6]] = [[1,4],[2,5],[3,6]]

20

Example: say

say> putStr (say "hello")

H H EEEEE L L 000
H H E L L O
HHHHH EEEEE L L O
H H E L L O

H H RkKEERE LLLLL LLLLL 000

say>

21

... continued:

where

picChar

etc...

unlines
map (foldrl (\xs ys->xs++"
transpose

map picChar

‘At = " A ",
"ARA",
"AAARA",
"A A",
"A A"]

"‘|"|‘YS))

22

Composition and Reuse:

A A
AAAAA
A A
A A

A A
AAAAA
A A
A A

A A
AAAAA
A A
A A

say> (putStr . concat
A
A A
AAAAA
A A
A A
A A
A A A A
AAAAA AAAAA
A A A A
A A A A
A A A A
A A A A A A A A
AAAAA AAAAA AAAAA AAAAA
A A A A A A A A
A A A A A A A A
A
A A
AAAAA
A A
A A
A
A A
AAAAA
A A
A A

Say>

map say

lines

say)

'VZ&'V

23

Summary:

@ Folds on lists have many uses

@ Folds capture a common pattern of
computation on list values

@ In fact, there are similar notions of fold
functions on many other algebraic
datatypes ...)

24

